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 Performance Feedback for Closed-loop 
Particle Filters  

Sami Siddique, Eugene Fiume, and David A. Jaffray 

Abstract— Particle filters have emerged as a popular technique for solving nonlinear and non-Gaussian sequential estimation 
problems as they are in some sense "optimal" with sufficient sampling density. This can be brittle, however, for if the sampling 
threshold is not met, the estimator may be very poor.  In this paper, a lower bound is developed that expresses the certainty in 
the estimate given by a particle filter in terms of the determinant of the state covariance matrix, the number of particles used, 
and the dimensionality of the state vector.  A modified particle filter is presented in which feedback of a performance metric is 
actively used to modulate the number of particles used by the estimator. The utility of this feedback principle is first 
demonstrated by examining a fundamentally challenging case of tracking an object in a simulated 2D image sequence with 
varying levels of noise. The proposed algorithm is then evaluated for the task of tracking a fiducial marker in X-ray fluoroscopic 
images. Empirical results show that the proposed technique offers an improvement in the robustness and efficiency of particle 
filters while satisfying the performance expectations of demanding applications. 

Index Terms— medicine, motion, tracking.  

——————————      —————————— 

1 INTRODUCTION

n this paper, we examine the use of feedback of per-
formance metrics to improve the robustness of tracking 

algorithms while satisfying the geometric performance 
requirements of demanding applications. Our work stems 
from the demand of clinical applications that require guar-
antees on geometric performance. In diagnostic and thera-
peutic interventions, intraoperative motion estimation is 
needed to guide interventional tools with high precision. In 
image-guided radiation therapy (IGRT), motion estimation 
is essential to improve the precision with which therapeu-
tic radiation is delivered. Tracking objects of interest in 
IGRT can be challenging. For example, tracking a fiducial 
marker in the lung under X-ray fluoroscopy can present a 
heterogeneous background with nonstationary noise due 
to the pattern presented by ribs and breathing motion. 
Lack of sufficient geometric information leads to impreci-
sion in intervention placement, an ineffective treatment, 
and can also cause irreversible toxicity.  

If the tracking problem involves linear dynamics with 
additive Gaussian noise, then it can be handled well with 
a Kalman filter [9] as the entire density can be represented 
and propagated using only the mean and the variance. 
However, in practice there are many sources of nonlinear-

ity and non-Gaussian noise.  Particle filters and their va-
riants (Condensation, Markov Chain Monte Carlo 
(MCMC) filter, Metropolis-Hastings importance sampling 
filter, Bayesian bootstrap filter, sequential importance 
sampling (SIS), sampling importance resampling (SIR) 
filter) [3,9,10,11] have emerged as promising solutions to 
tracking under such situations.  These algorithms, how-
ever, are approximate, which converge in expected value 
with a asymptotically large number of particles. The 
number of particles, N, to use in a particle filter is an open 
question in computer vision and is an important decision 
as it affects the performance and computational expense 
of this estimator. A tradeoff exists between the reliability 
and precision of an estimate and the number of particles 
used, which affects the computation time. We note that 
while particle filters can operate in linear time in the 
number of particles asymptotically [22], the computation-
al burden of the likelihood step requires in practice that 
we minimize the number of particles used. In this paper, 
we introduce a framework to control this tradeoff. Fig. 1 
illustrates the proposed framework. Given a desired 
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Fig. 1. System diagram illustrating feedback of performance in
sequential estimation. ( )
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tracking performance, as specified by a user, a controller 
uses estimates of the geometric performance of the track-
ing algorithm to dynamically update the parameters of 
the tracking algorithm in an attempt to maintain the de-
sired performance within constraints.  

 
A few attempts have been made to characterize the 

performance of particle filters [12, 20, 21, 22]. Carpenter et 
al. [22] propose an effective sample size (ESS) that requires 
running the particle filter independently over several rep-
licates or runs. They also present an SIR filter based on 
stratified sampling that assigns a different proportion of 
the total number of particles N to each stratum. Kong et 
al. present an earlier definition of ESS [24]. MacCormick 
and M. Isard [20] introduce notions of survival diagnostic 
(similar to ESS in [24]) and survival rate in the context of 
partitioned sampling. They show how the number of par-
ticles assigned to different partitions can be varied when 
tracking objects in high-dimensional configuration spaces. 
In particular, they suggest through the task of tracking an 
articulated chain in simulation that partitions correspond-
ing to parts that exhibit higher variance in dynamics be 
assigned more particles. In order to optimize the use of 
particles for high dimensional configuration spaces, 
Sminchisescu and Triggs [21] propose a covariance-scaled 
sampler that eigen-decomposes the covariance matrix 
from the previous time step’s posterior, resconstitutes it 
to retain only a select few most uncertain eigendirections, 
and uses it to form the proposal density. For certain 
classes of state-space models, Rao-Blackwellization, a va-
riance reduction method, can be applied to reduce the 
number of particles used [28]. This involves partitioning 
the state so that part of the computation can be performed 
analytically. 

 
Approaches have been proposed for adapting the 

number of particles dynamically during tracking. In [13], 
use of the KL divergence between the estimated and true 
posterior densities of the state is made to express the min-
imum number of particles as a function of the number of 
“bins” in the true distribution. It is argued [14] that this 
expression is independent of the mismatch between the 
estimated and true distributions. An alternative expres-
sion for the minimum number of particles has been pro-
posed in [14] that is also based on the KL divergence. 
However, the analysis has been based on a one dimen-
sional state and the expression derived for the minimum 
number of particles is a function of the true mean value of 
the state. More recently, Guo and Qian [18] propose an 
adaptive particle filter in which they compare the ratio of 
ESS (as defined in [20] and [24]) to a threshold to deter-
mine if more samples are needed. 

 
Feedback of performance in tracking applications has 

been proposed in computer vision literature. Erdem et al. 
demonstrated a framework for tracking contours of non-
rigid objects that is robust to occlusion and background 
clutter [3, 4]. Their method employs feedback of image 

cues including differences in color, edge information, mo-
tion between the object that is tracked and the back-
ground.  

 
In this paper, we first derive an explicit bound on the 

performance of a particle filter based on sequential im-
portance sampling. This bound provides valuable insight 
and forms the basis of a closed-loop particle filter in 
which feedback of geometric performance is used to con-
trol error. After establishing notation and providing a brief 
background of particle filters (Section 2), we present a 
bound on the performance of particle filters (Section 3), 
introduce a closed loop particle filter and evaluate it (Sec-
tion 4). 

2 BACKGROUND 
Sequential Bayesian filtering provides a probabilistic 

framework for estimating the probability density of the 
state of a dynamic system based on noisy or indirect ob-
servations of the state. Let X denote the state vector 
at time instant t , where T  is time period be-
tween successive observations with , and let 

 denote the observation at time . Let with l 

< m denote the sequence { and let be de-
fined similarly.  Each stage of this filtering process in-
volves a prediction step at which the density 

is computed using a dynamic model, and an 
update step at which is computed using an 
observation model. Imposing a Markov assumption and 
an independence assumption, 

d
k ∈
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, the densities at the prediction and up-
date steps can be shown to be given by [9]: 
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  (2) 

and 
         (3) 

 
where c  is a normalizing constant and (p Y the 
likelihood. 

Due to the inherent non-linearity, non-stationarity, and 
the non-Gaussian nature of many problems, the above 
equations are difficult to compute in closed form. Particle 
filters offer a solution to this problem by performing se-
quential Monte Carlo estimation [10, 11] based on a sam-
pled representation of the probability density given by a 
set of weighted samples, 

 

{ }( ) ( ), | 1,...,i i
k k kV w i N= =X       (4) 
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where is a sample (or particle) drawn from the cor-

responding probability density,  is the 
weight associated with the  particle, and is the 
number of particles used in the approximation. Under 
this representation, the posterior can be approximated 
using importance sampling [11] as 
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where (.)δ  is the Dirac delta function. Moreover, any 
moment of the posterior density can be approximated 
using a summation over the samples ( )i

kX . Consider the 
first moment, 
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where are samples drawn from the density 

. If the samples are independent, then it can 

be shown that under weak assumptions is an 

asymptotically unbiased estimator[12] of , and 

according to the law of large numbers, E  will al-
most surely converge to  i.e. 

( )i
kX
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                                    (8) ..ˆ ( ) ( )N k k
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Eq. 8 is an asymptotic bound with a specific inverse-

root convergence as N grows arbitrarily.  In practice we 
are interested in relatively small, finite N. From the cen-
tral limit theorem, we expect the rate of convergence of a 
basic Monte Carlo estimate to be of the order 

1
2(O N− )

)

of a

d

[29]. However, this requires that the N particles 
used are statistically independent and that the function 
being integrated is known exactly. This is not necessarily 
the case in sequential Monte Carlo estimation [26, 27, 29]. 
According to Crisan and Doucet [27], an upper bound on 
the variance of the estimation error has the form 

1 , where c is a constant. Daum and Huang [26], 

however, argue that the constant in this upper bound is 
actually a function of the dimensionality of the state vec-
tor (approximately linear in state dimension). We address 
the problem of selecting an appropriate number of par-
ticles from a mathematical and practical standpoint and 

explore an online approach.  

(cO N−

 
In the next section, we develop a probabilistic upper 

bound on the performance of a particle filter. We seek a 
practical value of N that meets the tracking requirements 

 given application. As we show in the next section, 
this may require modulating the value of N while track-
ing. Throughout this paper we make use of the terms er-
ror and uncertainty. Intuitively, the term error refers to 
any deviation of an estimate from the true mean while the 
term uncertainty characterizes the dispersion of the esti-
mate about the true mean. A formal definition of these 
terms is presented below. 

 

3 FEEDBACK OF GEOMETRIC PERFORMANCE  

We first develop a probabilistic upper bound on first 
order statistics that relates the uncertainty in an impor-
tance sampling based particle filter to the covariance and 
dimensionality of the state, and the number of particles 
used. This bound is then used to develop an algorithm for 
balancing tradeoffs between geometric precision and the 
number of particles used, which dictates the computa-
tional performance. The derivation of this bound is based 
on a generalization of the Chebyshev inequality to higher 
dimensions. A number of generalizations to the Cheby-
shev inequality have been presented in literature (e.g., 
[16] and [17]) that vary in the degree of tightness. Unlike 
these generalizations, here, a generalization is developed 
that is of the same form as the original inequality. The 
isotropic formulation makes it practical in a number of 
applications. 

 
Lemma 1 
Let ∈X Σ

X | | 0
be a random vector and let denote the covariance 

of . Assume that ≠Σ , where .
0

 denotes the determi-
nant. For any scalar η > , 

1T TP Pη η−⎡ ⎤ ⎡ ⎤≥ = ≥⎣ ⎦ ⎣ ⎦X Σ X X X Σ

=W ΣX

 

 
Proof: 
Consider a one-to-one mapping, , from the re-

Fig. 2. Illustration of equiprobable events in . Regions defined
by 

2
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same area. The center of each figure represents the origin. 
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gion xyR enclosed by T η<X X  to the region wvR enclosed 

by 1T η−Σ X

wv

<X . Fig. 2 illustrates a two-dimensional case. 

The probability of the event corresponding to R  is giv-
en by 

1TP η−X Σ⎡ ⎤⎣ ⎦ =<X ( )
R

f∫
W

W W dW ( )T

R

f= ∫
X

XΣ X dX  

where TΣ  is the Jacobian of the mapping, fW  and fX  

are characteristic functions that are equal to 1 in the un-
shaded regions of the left and right plots in Fig. 2, respec-
tively, and zero otherwise. Thus, this expression is equiv-
alent to 

( )X dX
R

f∫
X

XΣ [ ]TP η= <X XΣ [ ]TP η= <X X Σ

2

 

For example, the event described by right-hand side 
above defines an equivalent region (disc in , sphere in 

, etc.) of radius 3 η Σ . The complements of each set of 

events are also equal. Thus,  
1 11P PT Tη η− −⎡ ⎤ ⎡ ⎤≥ = <⎣ ⎦ ⎣ ⎦X Σ Σ X−X X  

1 T TP X X Pη η⎡ ⎤ ⎡ ⎤= − < ≥⎣ ⎦ ⎣ ⎦Σ X X Σ

X | |≠Σ 0

=

0

            

 
Theorem 1  
Let be a random vector and let denote the covariance 
of . Assume that , for any scalar 

d∈X Σ
ε >  

[ ] 2

d
P E ε

ε
⎡ ⎤− ≥⎣ ⎦X X ≤

Σ
 

where . denotes the norm. 2L
Proof:  

Let [ ]E≡ −Z X X and define Y as 
1Tif
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Y
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1 1TE ⎡ ⎤⎣ ⎦Z Σ Z
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⎩

 

Clearly,  
. 

The expected value of both sides is 
− −TPη η⎡ ⎤≥ ≤⎣ ⎦Z Σ Z           (9) 

Since Z is a scalar, 1T −Σ Z
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From Lemma 1, it follows that  
1TP Pη .T dη

η
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Defining 2ε η≡ Σ , and substituting into (10), 
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Theorem 2 
Let ∈X kEbe a random vector with mean ⎡ ⎤≡ ⎣ ⎦μ X

kCov

 

and covariance ⎡ ⎤≡ ⎣ ⎦Σ X 0≠Σ
X
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=
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 with | | . Consider the 

estimated mean of  as given by a particle filter based on 
sequential importance sampling using N particles, for 
sufficiently large N, 

 

Assume that the mean,μ , and the variance, , of this 
estimate exist and are finite: 

Σ̂

ˆ
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Then for any scalar ε > , 
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ε ε
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Proof: 
Under weak assumptions on μ and  discussed exten-
sively in [12], particularly Theorems 1 and 2, 

Σ

 
→μ μ                  (11) 

Fig. 3. Particle filtering algorithm with feedback of Σ̂
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From Theorem 1, 
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The complement of this event is given by 

2
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E ε
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Σ
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According to Theorem 2, for any given acceptable 

tracking precision, ε , the probability that the estimated 
mean is within ε  of the true mean can be expressed as  a 
function of the determinant of the covariance of the state, 
the dimensionality  of the state, and the number of par-
ticles used. Many signals of interest exhibit nonstationari-
ty. For instance, when tracking humans as the subject 
walks through a shadow or gets partially occluded by an 
object, the uncertainty in the location of the subject may 
increase. Accordingly, Σ increases and 

ˆ ( )N kP E ε⎡ ⎤
⎥⎦

− <⎢⎣
μX

N

decreases. In practice, by modulat-

ing to match the change in Σ , the probability bound, 

ˆ ( )N kP E ε⎡ − <⎢⎣
μX ⎤

⎥⎦
, can be maintained. 

 The quantity Σ  is inaccessible but its estimate 

ˆ
NΣ can be used as feedback (of uncertainty). An algo-

rithm is presented in Fig. 3 that uses a proportional 
integral (PI) controller to modulate . The proportional 
(

N
Pκ ) and integral ( Iκ

ˆ
NΣ

ˆ
NΣ

) gains of this PI controller were 
hand tuned.   

 
When implementing the propsed algorithm, cases in 

which becomes singular must be handled. In these 
cases the determinant of this matrix will underestimate 
uncertainty. To avoid this situation, can be regula-
rized by mixing it with an identity matrix. It should be 
noted that Theorem 2 presents a sufficient condition and 
requires that adequate observation and dynamic models 
are specified. An analysis of the controllability and stabili-
ty of the controller is beyond the scope of this paper. 

 
The proposed method uses just the number of particles 

required to maintain the error at the desired level. It of-
fers a designer a more robust practical algorithm. 

  
We apply the proposed algorithm and show some em-

pirical results in Section 4. The analysis confirms a poten-

tially powerful technique for dynamic optimization of the 
number of particles to use in order to regulate the tradeoff 
between tracking uncertainty and computation time. 

4 EXPERIMENTAL RESULTS AND DISCUSSION  
Two situational examples are used to demonstrate the 
proposed particle filtering algorithm. The cases examined 
are clinically significant as the images used in the simula-
tions are representative of tracking fiducials under X-ray 
fluoroscopy in an X-ray quantum noise limited system 
[30, 31].  
 
The first example uses toy but representative data and 
involves  the task of tracking a circular disc (of radius 5 
pixels) in 2D image sequences (100x60 pixels; 30 frames). 
The state of interest is the location of the centre of the disc 
(x and y coordinates of the image).   Feedback of the de-
terminant of the covariance matrix, Σ̂ , as defined in Sec-
tion 3.1, was used to modulate the number of particles, N, 
in an attempt to balance tradeoffs between computation 
time and certainty. Fig. 4 shows a few frames from the 
sequence used. The disc starts in region A in which an 
additive white Gaussian noise (AWGN) with an SNR of -
10dB is present. It then moves into region B (-30dB); 
frames 9 to 20) followed by region C (-10 dB). An edge-
based observation model similar to that used in [3] was 
used. The dynamics were assumed to be explained by a 
Brownian motion model with drift. The performance of 
the particle filter as the object moves in and out of the 
noisy region B, both with and without feedback of Σ̂ , is 
compared in Fig. 4. (The particle filter algorithms used 
here do not employ loss of diversity correction [19]). Both 

Fig. 4. Comparison of the performance of a particle filter with
and without feedback of Σ̂  .   
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estimators were initialized with 40 particles. In the case of 
the conventional particle filter without feedback, Σ̂ in-

creases in the noisy region B and correspondingly the 
mean square error (M.S.E.) also increases to a maximum 
of 15 px2 (pixels2).  The number of particles is fixed at 40 
in this conventional case. On the other hand, in the case of 
the particle filter with feedback, Σ̂ increases as the disc 
enters region B. Correspondingly, the number of particles 
increases in an attempt to maintain the required level of 
certainty. Thus, there is no significant increase in the 
M.S.E. error while the disc is in region B. When the disc 
exits region B, negative feedback of the fall in Σ̂  causes 
the number of particles to fall. Hence, the proposed ap-
proach modulates N in order to maintain the required 
certainty. Note that the value of Σ̂ as the disc enters re-
gion B is higher in the case of feedback because fewer 
particles (10 as opposed to 40) are used in this case prior 
to entering region B. Feedback thus provides a convenient 
means to select between targeting precision and computa-
tion speed.  

 
The second example for demonstrating the proposed 

particle filtering algorithm uses real data. An experiment 
similar to the simulation described above was performed 
using an X-ray fluoroscopic imaging sequence. Compared 
to the additive Gaussian noise model used in the simula-
tion above, the X-ray fluoroscopic images used here cor-
respond to a more complex noise model governed by 
Poisson statistics [25]. 
 

A discrete-time sequence of 2D X-ray images of a fidu-
cial marker (metallic sphere 2.0 mm in diameter - Beekley 
Y-Spot 102) was acquired using the setup shown in Fig. 5.  
(The X-ray projection of the marker is a sphere that spans 
8 pixels in diameter). The marker was attached to a Styro-
foam block that was moved using a programmable high 
precision linear motion stage. The images were acquired 
at 1 fps on a Varian Paxscan 4030A (2048x1536) under the 
kV imaging geometry typically found on kV enabled 
medical linear accelerator systems (1000 mm source-to-
imaging-axis distance, 1550 mm source-to-detector dis-
tance). The images were acquired at 100 kVp and 0.5 
mAs. A total of 50 frames were acquired.  

 
To simulate a simple form of a typical motion exhi-

bited by fiducial markers and interventional tools, the 
marker attached to the linear stage was moved according 
to Brownian motion dynamics as given by 

 

1k ks s kυ+ = + , 
 

where denotes the frame number, k ks is the position of 
the marker in world coordinates and kυ  is Gaussian 
noise, 2( , )N μ σ , with 1

2μ =  cm and 2σ = 1
8 cm. The 

proposed algorithm’s ability to handle changes in ob-

served images was tested by moving the marker behind a 
set of acrylic slabs (each 9.2 mm thick) as shown in Fig. 5. 
Increasing the number of slabs used increases the attenua-
tion of X-rays and decreases the contrast-to-noise ratio 
(CNR) of the marker in the region behind the slabs. CNR 
is defined here as: 

marker bg

bg

m m
CNR

σ

−
=

markerm

bgm

 

where  is the average value of the pixels in the re-
gion corresponding to the marker and is the average 
value of the pixels in a region immediately outside the 
marker but within the slab region. The CNR correspond-
ing to the different number of slabs used is shown in Ta-
ble 1. 

 
The setup described above was used to generate sever-

al image sequences, each corresponding to a different 
number of slabs. The particle filter described earlier was 
used to track the marker as it traversed through regions 

Fig. 5. (a): Diagram showing aerial view of setup. Geometry simu-
lated in this study was taken from radiation treatment systems that 
are proposed for tracking fiducial markers (d1 = 1000 mm ; d2 = 
1550 mm; thickness = 0 to 26 acrylic slabs of 9.2 mm thickness 
each; Field-of-view, FOV = 1024 pixels).  The marker was post-
erior to the slabs to allow motion. (b): Experimental setup used to 
evaluate the performance of the proposed algorithm that incorpo-
rates feedback to modulate the number of particles used. Shown 
here is the configuration of the X-ray source, X-ray detector, fidu-
cial marker, acrylic slabs, and the linear motion stage used to 
move the marker.  Right: A close up view showing the configura-
tion of the slabs used. 
 

Source 

Slabs 

Linear Stage 

Detector

Marker

d1 d2 

Patient 

X-ray 
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X-ray 
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of low noise (corresponding to air) and high noise (cor-
responding to the region behind the slabs). For each im-
age sequence, tracking was executed multiple times with 
different random seeds for the particle filter (each of these 
referred to as a run). Since a particle filter is a stochastic 
estimation technique, each run was repeated 20 times to 
evaluate the reproducibility of the estimate. The particle 
filter was initialized by specifying a uniform prior over a 
region containing the centre of the sphere. As in the simu-
lation above, a Brownian motion model with drift and an 
edge-based observation model were used. 

 
The marker was first tracked without using feedback 

of uncertainty. The metrics used for analysis were: 
 
(i) Average L1 error, defined here as the absolute value of 
the difference between the estimated location of the 
marker along the horizontal axis and ground truth: 

,
1 ˆk r k

r k
u u

KR
−∑∑  

 
where  is the estimated location of the object of interest 
along the horizontal axis corresponding to frame k and 
run r,  is the ground truth, K and R are the total number 
of frames and the total number of runs, respectively. 

û

u

 
(ii) Reproducibility, defined as the expected value of the 
standard deviation in the estimated location over all runs:  

 

( )2

, ,ˆ ˆ[ ]k r r k ru E u
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

]

1 1
k rK R∑ ∑  

where is the expected value of the estimated loca-
tion along the horizontal axis over all R runs. 

,ˆ[r k rE u

 
The metrics defined above were computed for all com-

binations of number of particles and number of slabs over 
all 20 runs and are presented in Table 1.  Also shown in 
Table 1 is the average estimated uncertainty for each 
combination calculated as follows: 

,

1 ˆ
N k rr kKR∑∑ Σ  

where 
,

ˆ
N k r

Σ is the determinant of the covariance matrix 

corresponding to the posterior density of the kth frame 
and rth  run. The analysis presented in Table 1 was per-
formed on frames in which the marker was behind the 
slabs. Robust linear least squares fit of the average esti-
mated uncertainty and the average L1 error to a linear 
polynomial reveals an R2 (coefficient of determination) 
value of 0.95. 

 
The proposed framework employing feedback (Fig. 3) 

was then evaluated at operating precisions of 1.0 pixel 
and 3.0 pixels. To present a considerable challenge, the 
image sequence with 23 slabs was used. As in the case 
without feedback, each run was repeated 20 times. A P-

controller was used to modulate the number of particles 
used. The performance of the proposed algorithm was 
compared with a particle filter that did not use feedback. 
Runs from sequences with feedback corresponding to 
operating precisions of 1.0 pixel and 3.0 pixels are shown 
in Fig. 6(b) and Fig. 6(d), respectively.  Shown in each 
quadrant of Fig. 6 are the determinant of the covariance 
matrix, ˆ

NΣ , calculated from the updated probability 

density of the state, the L1 error per frame, and the num-
ber of particles used plotted as a function of frames over 
an exemplary run. Shaded regions in the figure indicate 
frames in which the marker falls behind the slabs and 
correspond to lower CNR. The feedback cases shown in 
Fig. 6(b) and Fig. 6(d) were compared with similar cases 
of a conventional particle filter that did not employ feed-
back. Fig. 6(a) and Fig. 6(c) show an exemplary run of a 
particle filter operating using a fixed number of particles: 
20 and 100, respectively. These cases were chosen for 
comparison because the feedback cases operate using 20 
and 75 particles when outside the noisy region behind the 
slabs. Also shown in Fig. 6(e) are the average L1 error, the 
L∞ error and the average number of particles used per 
frame for each case. Analysis was performed on frames 
14-50 and averaged over all 20 runs. These frames include 
frames in which the marker is in the noisy region behind 
the slabs and those in which the marker is in air. Tracking 
was initialized at frame 7 with 100 particles. The marker 
was behind the slabs in frames 8-37. 

 
It can be seen from Table 1 that as the number of par-

ticles used increases, the accuracy improves as expected. 
What is more important to note is that as the noise in-
creases with the addition of more slabs, the accuracy de-
creases in general. (The cases of 11 slabs and 17 slabs 
show a slightly higher error. This could be due to a slight 
shift in the marker away from ground truth.) As noise 
increases while tracking an object, the number of particles 
used can be increased to achieve the required operating 
accuracy, provided the object is still "visible". For the case 
of 26 slabs, due to the low SNR the marker is lost. The 
strong correlation between the average estimated uncer-
tainty and the average L1 error makes the estimated un-
certainty a good candidate for a metric of feedback for the 
given application.  

 
Comparing the performance of the particle filter for 

the cases presented in Fig. 6(a-b), it can be observed that 
for the case without feedback, when the marker enters the 
noisy slab region, the L1 error rapidly increases and the 
estimator loses track of the marker. The feedback case, 

however, is able to use feedback of the increased ˆ
N k

Σ to 

increase the number of particles in order to control the 
error. Similarly, for the cases shown in Fig. 6(c-d), while 
the error increases in the slab region for the case without 
feedback, the proposed algorithm is able to maintain the 
error. When the marker exits the slab region, the pro-
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posed algorithm is able to use feedback of the lowered 
uncertainty estimate to reduce the number of particles 
used. From Fig. 6(e), it can be seen that the average L1 er-
ror and the L∞ are lower for the proposed approach. In-
stead of specifying the number of particles to use, this 
approach lets the designer specify the error tolerance of 
the system  leaving the algorithm to choose the number of 
particles. It is expected that the greater the disparity be-
tween regions, the more useful the proposed algorithm 
would be. Optimal controller designs could give better 
results. 

Theorem 2 relates the first order estimate of the true 
state to the determinant of a covariance matrix. It is ex-
pected that higher order estimates are related to the en-
tropy of the state. It should be noted that a logarithmic 
relation exists between the determinant of a covariance 
matrix (  and entropy , )C ( )S

                                 .                                 (13) log |S∝ |C
For example, for a Gaussian distribution, this relation is 
given by, 

( )| | ln 2
2 2

dS C e1 ln π= +

SN e∝

 

where is the dimensionality of the state vector. In [15], 
through the use of the Legendre series expansion, it is 
shown that the entropy is related to the higher order 
moments of a distribution. It is not surprising to expect 
the minimum number of particles required for conver-
gence to be a function of the entropy of the state. For in-
stance, if a small image is being analyzed, fewer particles 
suffice as “asymptotic”, while a larger image would re-
quire more particles.  The maximum entropy of a state 
(achieved when all possible events are equiprobable) is 
given by the log of the cardinality of the state space.  For 
example, for an image of size U-by-V and a state 

, a maximum of UV ap-
propriately placed particles would be required: From 
Theorem 2 which suggests that N be chosen such that, 

 and from 

d

(1,

|C
N e∝

( , ) 2,..., ) (1, 2,..., )i iu v U V∈ ×

|N ∝
maxmax S logUVe UV= =

(13) above, . Thus, 
. The optimal value of N is 

affected by the discretization of the state space and is the 
subject of ongoing research. 
 
In the algorithm presented in Fig. 3, the controller may 
introduce a lag; when the object being tracked transitions 
from the region of low noise to the region of high noise, 
there is a delay before N is increased to maintain the 
tracking uncertainty. This creates jumps in the RMSE at 
transition points. However, it is expected that if the target 
is in a neighborhood with certain noise characteristics at a 
given frame, it will be in neighborhoods with similar 
noise characteristics in the immediately following frames. 
Moreover, unlike the simulations in this study in which 
compositing of regions of low and high noise creates an 
artificial boundary that would otherwise not be observed, 
in practice changes in noise characteristics are expected to 
be less drastic. In a clinical context, when tracking objects 

in the lung, if such boundaries are present, the algorithm 
could learn where such boundaries exist over a few 
breathing cycles and use this information along with the 
predicted location of the target to increase N just prior to 
entering a noise field. By learning the background context 
over a few breathing cycles, the controller would be better 
able to adapt the value of N. It is expected that the greater 
the variation in noise environments, the more useful the 
more useful the proposed algorithm would be. Better con-
trol algorithms with faster response times can be de-
signed to address latency concerns, but we leave this 
problem to future work. 
 
Note that a changing value of N implies a variable com-
putation time. This may be an issue in certain applica-
tionn when the estimator’s computation time exceeds the 
limited computational resources of a system. In radiothe-
rapy, however, a variable computation time may be ac-
ceptable; if the estimator is unable to meet the desired 
targeting uncertainty or is unable to process an estimation 
step in time, the firing of the treatment beam can be de-
layed to the next available time step with an acceptable 
level of estimated uncertainty. 
 
The tightness of the inequality presented in Theorem 2 
and its relation to the Cramer-Rao bound need to be ex-
plored. 

5 CONCLUSION  
In this paper, it has been shown that the optimal choice 

of the number of particles in a particle filter depends on 
the noise in the image and the performance requirements 
of the application. A framework has been proposed in 
which the designer specifies an accuracy tolerance and 
the algorithm modulates the number of particles to use in 
order to meet the performance criteria using as many par-
ticles as necessary. This approach allows tradeoffs be-
tween the various requirements of an application to be 
balanced. Theorem 2 presents a sufficient condition; if 
there are modeling deficiencies in observation or dynamic 
models, then these can potentially be corrected adaptively 
while tracking. This approach would allow robustness to 
modeling imperfections and is the subject of future work. 
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Table 1. Results of tracking a fiducial marker without feedback of uncertainty over a range of slab thicknesses using different
number of particles. The average L1 error (a) and the average estimated uncertainty (c) over frames in which the marker falls 
behind the slabs, averaged over all 20 runs. (b) Reproducibility across all 20 runs.  
 

(a) Average L1 error (pixels) (Accuracy) 
No. of         
Particles 0 8 11 14 17 20 23 26 

10 12.57 27.47 24.05 20.62 29.08 25.07 28.67 19.05 
20 4.79 12.43 12.33 12.99 8.34 12.02 25.94 21.63 
50 0.81 2.79 2.04 1.09 1.33 3.81 15.46 22.20 

100 0.40 0.51 0.71 0.72 0.85 0.82 4.26 20.98 
200 0.32 0.45 0.60 0.59 0.79 0.63 1.72 18.37 
500 0.28 0.38 0.53 0.49 0.65 0.54 1.63 17.26 

1000 0.26 0.33 0.52 0.45 0.66 0.51 1.65 16.10 
 
(b) Reproducibility (pixels) 

No. of         
Particles 0 8 11 14 17 20 23 26 

10 12.62 24.22 25.91 22.43 22.12 15.74 20.51 16.89 
20 4.87 10.14 15.96 8.86 5.98 12.98 15.95 14.96 
50 1.25 2.57 2.47 1.38 1.38 5.54 11.10 9.99 

100 0.32 0.53 0.82 0.70 0.92 1.29 7.20 6.26 
200 0.19 0.29 0.55 0.38 0.51 0.88 2.81 3.44 
500 0.13 0.24 0.30 0.23 0.39 0.53 1.63 3.32 

1000 0.09 0.13 0.25 0.18 0.35 0.52 1.39 2.08 
 
(c) Average Estimated Uncertainty (pixels) 

No. of         
Particles 0 8 11 14 17 20 23 26 

10 355.26 166.61 68.15 81.95 78.11 105.43 73.47 109.56 
20 98.25 53.13 65.44 76.62 50.83 52.59 128.14 155.43 
50 4.08 25.07 11.24 5.36 6.77 30.13 142.05 304.79 

100 0.56 1.98 2.30 3.16 3.57 5.83 45.09 460.25 
200 0.25 1.74 2.13 2.25 3.39 4.86 23.16 479.53 
500 0.26 1.56 2.05 2.23 3.06 4.90 25.48 1182.61 

1000 0.23 1.41 2.21 2.20 3.75 5.25 26.75 935.62 
 

    
 0 8 11 14 17 20 23 26 

CNR 86.04 18.63 19.34 14.80 8.14 5.57 3.03 2.14 
Thickness 
(mm) 0 73.6 101.2 128.8 156.4 184 211.6 239.2 

Number of Slabs 

Number of Slabs 

Number of Slabs 

Number of Slabs 
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 (a) (b) (c) (d) 
Number of Particles 

(N)/ Uncertainty 
Specified (U.S.) 

N =20 U.S.= 3 
pixels 

N=100 U.S. = 1 
pixel 

Avg.  L1 Error 37.26 2.08 3.63 1.19 
L∞  Error 177.18 46.15 64.90 25.03 

Avg.  number of 
particles /frame 

20 101.8 100 130.2 
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Uncertainty  Specified: 1 

(e) Fig. 6. Comparison of the performance of a particle filter with and with-

out feedback of ˆ
N k

Σ . Shaded regions indicate frames in which the

marker falls behind the slabs. (a) and (c) show a run from tracking se-
quences corresponding to 20 and 100 particles, respectively, without
the use of feedback. (b) and (d) show a run from tracking sequences in
which feedback of uncertainty is used. Here operating uncertainties of 1
and 3 pixels are specified for cases (b) and (d), respectively. (e) A
comparison of the average L1 error, L∞ error, and the average number
of particles per frame corresponding to runs employing feedback of
uncertainty ((b) and (d)) and those using a fixed number of particles ((a)
and (c)). 
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